IN VITRO EFFECTS OF CAFFEINE ON THE PROLIFERATION, APOPTOSIS AND GENE TRANSCRIPTS EXPRESSION OF CHONDROGENIC DIFFERENTIATION IN GROWTH CARTILAGE OF RATS

Amanda Maria Sena Reis¹, Raquel Viana Raad², Natália de Melo Ocarino³, Rogério Serakides³

¹ Mestranda, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil.
² Aluna de Iniciação científica, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil.
³ Professora, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil (E-mail: serakidesufmg@gmail.com).

INTRODUCTION

Caffeine is a methylxanthine found in several foods, therefore widely consumed by humans. A variety of its effects and mechanisms on tissues have been widely studied, however, despite the fact that it alters post-natal bone growth, there have been only a few studies on its effects on growth cartilage. The objective of this study is to evaluate the in vitro effects of caffeine on proliferation, apoptosis and gene transcripts expression of chondrogenic differentiation in growth cartilage.

MATERIAL AND METHODS

The cartilaginous epiphyses of 90 femurs of newborn rats, which were divided into two subgroups: treated with caffeine and control group, both observed the time of 0, 7, 14 and 21 days. The cartilaginous epiphyses of four femurs of each subgroup and each time span were subjected to histomorphometric analysis and immunohistochimical analysis and Tunel in order to evaluate cell proliferation and apoptosis, respectively. The cartilaginous epiphyses of six femurs were subjected to RT-PCR in real time to evaluate the expression of caspase-3, Runx-2 and Sox-9.

RESULTS AND DISCUSSION

Both the control group and the group treated with caffeine, chondroblasts morphology was similar throughout the period of cultivation. The percentage of empty lacunae in the chondroblasts of the cartilaginous epiphysis of the femur was increased significantly throughout the cultivation period. However, after 21 days the group treated with caffeine showed the number of empty lacunae of chondroblasts significantly lower compared to the control group (Figure 1). The decrease of proliferative activity and the increase of chondroblasts in apoptosis up to 21 days were found regardless of the subgroup. However, the decrease in cell proliferation caused by caffeine was significantly lower compared to the control group (Figure 2) and significantly increased the expression of gene transcripts for chondrogenic differentiation, represented by Sox-9 and the Runx-2 (Figure 4). However, the in vitro culture with caffeine revealed antagonistic effects: despite the positive effect on the proliferation and differentiation of chondroblasts, caffeine increased apoptosis, characterized by increased expression of caspase 3 (Figure 3) and the number of cells undergoing apoptosis (Figure 3), (p<0.05).

REFERENCES


FAPEMIG, CAPES, CNPQ