Phenotypic dissection of bone mineral density facilitates the identification of skeletal site specificity in the genetic regulation of bone mass attainment

Kemp JP1,2, Medina-Gomez C1,3,5, Estrada K1, Hepple DHM1, Zillikens MC1, Timpson NJ3,4, St Pourcain B3, Hofman A1, Jaddoe VW5, Davey Smith G1,2, Uitterlinden AG1,4,5, Tobias J.H, Rivadeneira F1,3,4, Evans DJ1,2

FUNDING: WELLCOME TRUST (WT135013A) NO CONFLICTS OF INTEREST HAVE BEEN DECLARED

INTRODUCTION:
The heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of environmental and genetic influences. Genetic studies using paediatric BMD measures may target factors preferentially involved in bone mass attainment.

AIM:
I: Quantify the degree to which common genetic variants and environmental factors influence BMD at different skeletal sites.
II: Identify genetic variants which are preferentially associated with the attainment of bone mass at one or more skeletal sites.

METHODS:
Phenotypes:
- BMD measured by whole-body DXA in 4890 ALSpac children
- partition scans: upper-limb (UL), lower-limb (LL) and skull (S)

Genome wide complex trait analysis (GCTA):
- performed on each skeletal site using 500K genotyped SNPs
- quantify the narrow sense heritability (h^2)
- estimate pair wise genetic (r_g) and environmental (r_e) correlation

Genome-wide association meta-analysis (GWAMA):
- linear regression: BMD at each site and 2.5M imputed SNPs
- quantify the narrow sense heritability (h^2)
- performed on each skeletal site using 500K genotyped SNPs

RESULTS I: GCTA ANALYSIS
Heritability estimates of BMD:
- Skull ($h^2=0.51$, SE=0.07, $P=2.0\times10^{-13}$)
- Lower limb ($h^2=0.40$, SE=0.07, $P=8.0\times10^{-10}$)
- Upper limb ($h^2=0.39$, SE=0.07, $P=2.0\times10^{-13}$)

Genetic and Environmental correlations:

<table>
<thead>
<tr>
<th>LOCUS</th>
<th>RSID</th>
<th>GENE</th>
<th>EA</th>
<th>β (UL-BMD)</th>
<th>β (LL-BMD)</th>
<th>β (S-BMD)</th>
<th>P (UL-BMD)</th>
<th>P (LL-BMD)</th>
<th>P (S-BMD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13q12</td>
<td>rs754388</td>
<td>TNFRSF11A</td>
<td>C</td>
<td>0.09</td>
<td>0.06</td>
<td>0.16</td>
<td>2.10x10^4</td>
<td>1.42x10^4</td>
<td>1.56x10^4</td>
</tr>
<tr>
<td>11p14</td>
<td>rs2908004</td>
<td>WNT16</td>
<td>A</td>
<td>0.16</td>
<td>0.14</td>
<td>0.17</td>
<td>1.47x10^4</td>
<td>1.41x10^4</td>
<td>1.56x10^4</td>
</tr>
<tr>
<td>7q31.31</td>
<td>rs3012465</td>
<td>TNFSF11</td>
<td>T</td>
<td>0.14</td>
<td>0.12</td>
<td>0.17</td>
<td>1.41x10^4</td>
<td>1.56x10^4</td>
<td>1.56x10^4</td>
</tr>
<tr>
<td>7q31.31</td>
<td>rs754388</td>
<td>TNFRSF11A</td>
<td>C</td>
<td>0.19</td>
<td>0.16</td>
<td>0.21</td>
<td>1.47x10^4</td>
<td>1.41x10^4</td>
<td>1.56x10^4</td>
</tr>
<tr>
<td>7q31.31</td>
<td>rs3012465</td>
<td>TNFSF11</td>
<td>T</td>
<td>0.19</td>
<td>0.16</td>
<td>0.21</td>
<td>1.47x10^4</td>
<td>1.41x10^4</td>
<td>1.56x10^4</td>
</tr>
<tr>
<td>7q31.31</td>
<td>rs754388</td>
<td>TNFRSF11A</td>
<td>C</td>
<td>0.19</td>
<td>0.16</td>
<td>0.21</td>
<td>1.47x10^4</td>
<td>1.41x10^4</td>
<td>1.56x10^4</td>
</tr>
<tr>
<td>7q31.31</td>
<td>rs3012465</td>
<td>TNFSF11</td>
<td>T</td>
<td>0.19</td>
<td>0.16</td>
<td>0.21</td>
<td>1.47x10^4</td>
<td>1.41x10^4</td>
<td>1.56x10^4</td>
</tr>
</tbody>
</table>

RESULTS II: GWAS ANALYSIS
Genome wide association:
- magnitude of effect size differed between skeletal sites -Table 2
- for example: WNT16/CPEJ locus - Figure 1
- larger per allele effect for S- and/or UL-BMD vs. LL-BMD.

Site specific association:
- $RIN3$ and LL-BMD (rs754388: $\beta=0.13$, SE=0.02, $P=1.4\times10^{-10}$)
- $RIN3$ previously associated with Pagets disease.

Figure 1: Regional association plots of the top SNPs associated with (A) LL- and (B) UL-BMD at the #TNF7 locus; in addition to (II): a comparison of the effect size of the top site specific SNP described by (I) on BMD at each skeletal site.

Table 2: Comparison of effect sizes and the strength of association of all variants which exceed genome-wide significance at one or more skeletal sites. (GENE) = closest gene; (EA) = effect allele; (β) = estimates of effect size expressed as adjusted SD per copy of the effect allele (EA); (CI-U) = lower limit of the 95% confidence interval for β; (CI-L) = upper limit of the 95% confidence interval for β; (P) = P-value. Site specific effect sizes depicted in blue.

CONCLUSION:
Different skeletal sites as measured by whole-body-DXA are to a certain extent under distinct environmental and genetic influences. Allowing for these differences may help to uncover new genetic influences on BMD, particularly those involved in bone mass attainment, for which S-BMD appears to be particularly well suited.