Circulating sclerostin associated with vertebral bone marrow fat in older men but not women

V. Mäi1, X. Li1, S. Sigurdsson2, G. Eriksdottir2, A.M. Haucksdottir2, L. Palermo1, T. Hue3, T. Lang1, T.B. Harris1, C.J. Rosen4, E. Vittinghoff1, N. Napoli5, K. Siggeirsdottir2, G. Sigurdsson6,7, D. Osaksdottir2, V. Gudnason2,6, A. Schwartz1

1University of California, San Francisco, California, USA
2Icelandic Heart Association, Kopavogur, Iceland
3Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, MD, USA
4Maine Medical Center Research Institute, Scarborough, ME, USA
5Department of Endocrinology and Diabetes, University Campus Bio-Medico, Rome, Italy
6Faculty of Medicine, University of Iceland, Reykjavik, Iceland
7Landspital University Hospital, Reykjavik, Iceland

Introduction

- Marrow fat (MF) and bone density (BMD) are negatively correlated. Proposed mechanisms include 1) a shift in stem cell lineage allocation from osteoblasts towards adipocytes, and 2) an increase in osteostatin-promoting cytokines with greater MF.
- Sclerostin is expressed by osteocytes and reduces bone formation by inhibiting the Wnt/B-catenin pathway.
- Circulating sclerostin is also associated with higher BMD. However, the relationship between circulating sclerostin and MF is not known.
- Circulating sclerostin increases with weight loss but little is known about relationships with the separate compartments of fat and lean mass.

Primary Objective

To characterize the relationships between circulating sclerostin and MF; QCT measurements of hip and spine, and body composition parameters, we used data from the Iceland AGES-Reykjavik cohort of older adults.

Methods

- COHORT: 301 participants at AGES-Reykjavik follow-up visit had measurements of vertebral MF and hip/spine QCT.
- Participants with inadequate serum (MF < 5 ml or BF > 50%) or use of bone-active medication (MF > 46%) were excluded.
- 137 women and 114 men were included in analyses.

Quantitative Computed Tomography (QCT)

- Scans were obtained for lumbar spine L1-L2, 125kVp, 120mA, 256x4mm, 1mm ST, and hip (240mA, 1mm ST), mid-thigh (<125kVp, 100mA ST) using 4-detector CT system (Siemens, Siemens Medical Systems, Erlangen, Germany).
- Cortical and trabecular volumetric BMDs (vBMDs) for vertebrae and hip, vertebral compressive strength, hip geometry, iliac osteosclerosis at mid femur and truncal fat at L1-S5 intervertebral space, and muscle attenuation at mid-thigh were calculated from QCT data.

Proton Magnetic Resonance Spectroscopy (PMRS) for Vertebral MF

- Single voxel PRESS (PRESS) technique was acquired in vertebral bodies L1 to L4 using a 1.5 Tesla scanner (GE Healthcare, Milwaukee, WI) with an eight-channel spine coil (TR/TE = 2000/70ms, 64 averages without water suppression, voxel size = 121x121x20mm3).
- Peak areas for water at 4.67 ppm and fat at 1.32 ppm were calculated using GE SAGE software. The average MFs (Fat/Fat+Water) (%)/100 from all four vertebral levels were used in analyses.

Dual-energy X-Ray Absorptiometry (DXA)

- Scans of lumbar spine, proximal femur and whole body were obtained with GE Healthcare Lunar (software version 11.4).

Assay for Sclerostin and Bone Turnover Markers

- Serum was collected and frozen at −80°C.
- Sclerostin and markers for bone formation (Ibmax-terminal propeptide of type 1 procollagen; PINP) and bone resorption (serum C-terminal cross-linking telopeptide of type I collagen; CTX) were assayed in one batch.

Statistical Analysis

- Linear models of mean levels of bone and body composition parameters were compared against tertiles of serum sclerostin level in a linear model adjusted for age, diabetes status, and BMI and ran separately by gender.
- P-values for linear trend across tertiles was used to assess association from models.

Results

- Table 1. Descriptive analysis of participants included in analyses

Table 2. Mean selected body composition parameters across tertiles of serum sclerostin level

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>vBMD (g/cm²)</td>
<td>0.30±0.09</td>
<td>0.30±0.09</td>
<td>0.30±0.09</td>
</tr>
<tr>
<td>Fat Mass (gm)</td>
<td>250±75</td>
<td>250±75</td>
<td>250±75</td>
</tr>
<tr>
<td>Sclerostin (ng/ml)</td>
<td>1.27±0.41</td>
<td>1.27±0.41</td>
<td>1.27±0.41</td>
</tr>
</tbody>
</table>

- Results are shown either as n (%) or means±SD.

Figure 1. Mean selected bone parameters across sclerostin tertiles

- P-values for trend shown. Adjusted for age, diabetes status, and BMI. 95% confidence levels shown as error bars.

Discussion

- As previous report showed a negative association between MF and BMD, it is surprising that sclerostin is positively associated with both MF and BMD. In higher MF, both MF and BMD were also associated with prevalent vertebral fracture in the same cohort, independent of BMD. Sclerostin may be a marker of bone fragility, but this remains controversial.
- Previous reports on sclerostin and MF are not available. Further investigation is needed to understand the gender difference.
- Both trabecular and cortical vBMDs were positively associated with sclerostin, consistent with the only previous report on central QCT and sclerostin.
- Previous studies have reported positive or no association between sclerostin and vertebral or BMI. Another study found no association between sclerostin and lean mass or fat mass.
- Interestingly, sclerostin increases in response to weight loss. Longitudinal studies are needed to fully understand the relationship between sclerostin and body composition.

Conclusions

- MF is positively associated with circulating sclerostin levels in men, providing additional evidence that MF and bone formation are linked.
- Circulating sclerostin is positively correlated with both trabecular and cortical vBMDs.

Figure 2. Mean selected body composition parameters across sclerostin tertiles

- P-values for trend shown. Adjusted for age, diabetes status, and BMI. 95% confidence levels shown as error bars.

Contact Information

Ann V. Schwartz, PhD. Associate Professor of Epidemiology and Biostatistics, UCSF.

References

7. Arens K et al., The Journal of Clinical Endocrinology & Metabolism 2011, doi: 10.1210/jc.2011-2312

Contact Information
Ann V. Schwartz, PhD. Associate Professor of Epidemiology and Biostatistics, UCSF.