MK-7 enhances expression of genes related to bone, enamel and dentin, and reduces the expression of genes related to apoptosis in developing murine molars.

Maria A. Landin1,2, Yashar Shabestari1, Amer sehic2, Janne E. Reseland1 and Harald Osmundsen2

1Department of Biomaterials and 2Department of Oral Biology, Faculty of Dentistry, University of Oslo

Background
Menaquinone-7 (MK-7) is a fat-soluble vitamin and a vitamin K2 homologue needed for post-translational modification of certain proteins required for blood coagulation, and in metabolic pathways in bone and other tissues. Recent studies found an association between long-term anticoagulant treatment (OAC) and reduced bone quality due to reduction of active osteocalcin. OAC is often linked to an undesired soft-tissue calcification in both children and adults. OAC often leads to increased incidence of fractures, reduced bone mineral density/bone mineral content, osteopenia and increased serum levels of undercarboxylated vitamin K-dependent proteins, known as Gla-proteins. Litle is known about the effects of vitamin K2 during tooth development.

Materials and methods
Female Balb C mice, CD-1 strain were fed on a vitamin K deficient fodder (D10051601) for 2 weeks prior to pups being born. Control mice were similarly fed on the corresponding control fodder (D10012M).

New-born pups were given MK-7 (0.2, 2 or 10 mg/kg body-wt., Kappa Bioscience, Oslo, Norway) by subcutaneous injections in the right hand side mandible. Control groups were injected with vehicle (corn oil). At 24 h post-injection the pups were sacrificed and first right-hand side molar tooth germs extracted and transferred into 300mL RNA-Later solution. The dissected tooth germs were homogenized. Total RNA was extracted using the RNeasy mini kit (Sigma).

About 1 μg of total RNA was used to synthesize cDNA and labelled with Cy3 or Cy5 using the GeneChip Array 900™ Kit. cDNA was hybridized to Mouse OneArray® v2 (Phalanx Biotech Group).

Statistical analysis of microarray data was carried out for each dose using Spotfire v. 9 Microarray Analysis Software (TIBCO Software).

Results
Treatment with 10 mg/kg body-wt. (Bw) MK-7, showed significantly altered expression (p<0.05) for 629 genes compared to the control group (Fig.1).

Treatment with 2mg/kg body weight MK-7 influenced the expression of 281 genes compared to the control group. Some of these 281 differentially expressed genes (p < 0.05), were up-regulated more than 5-fold (Figs.2 and 3).

227 genes were found differentially expressed in pups given 0.2 mg/kg Bw MK-7. These genes exhibited highly significant associations to apoptosis, polyamine metabolism (3 genes), retinoic acid-dependent regulation of apoptosis (3 genes) and to altered osteoclast and osteoblast signalling (6 genes).

Conclusions
A clear effect on gene expression in the developing tooth germ was apparent after 24 h at all dosages. The results indicate increased transcription of genes involved in development of bone, increased biosynthesis of important carbohydrates and of enamel/dentin, and reduced expression of apoptosis related proteins. Further investigations are, however, required to elucidate these findings. Such experiments will likely entail the establishment of a clear dose-response relationship and long term use of MK-7. Also, effects of oral administration should be studied.

References