Bone involvement and intervertebral disc calcifications in β-thalassemic patients: a retrospective study

Alessandro de Sire1, Antimo Moretti1, Massimiliano Bianco1, Francesca Gimigliano1, Giovanni Iolascon1
1 Department of Medical and Surgical Specialties and Dentistry, Second University of Naples, Naples, Italy
2 Department of Physical and Mental Health and Preventive Medicine, Second University of Naples, Naples, Italy

BACKGROUND

Beta-thalassemias are a group of hereditary blood disorders due to alterations in the synthesis of the β chains of hemoglobin. They have variable phenotypes ranging from severe anemia to asymptomatic condition [1]. The annual incidence of symptomatic individuals is estimated at 1 in 100,000 throughout the world and 1 in 10,000 people in Europe [2]. Bone involvement in patients with β-thalassemia is well known [1,2-8], but only a few studies have analyzed bone microarchitecture [4] and the prevalence of intervertebral disc (IVD) alterations in these patients [9-10]. The aim of our study was to evaluate the vertebral bone geometry and quality in a group of patients with β-thalassemia; moreover, we evaluated the involvement of IVD in terms of radiographic structural changes.

METHODS

Our retrospective case-control study was conducted in adults with β-thalassemia (aged 18-50 years). Patients were divided, according to the FICO, into 2 groups: subjects with BMD Z-score ≤−2, below the expected range for age, and subjects with BMD Z-score >−2, within the expected range for age. Assessment of proximal femur geometry was performed using the Hip Structural Analysis System (HSAS), providing the following parameters: Hip Apex Length (HAL), FemoralStrength Index (FSI), Cross-Sectional Moment of Inertia (CSMI), Cross-Sectional Area (CSA), Section Modulus (SM), and Buckling ratio (BR). Assessment of bone quality was performed using the Trabecular Bone Score (TBS), stratifying subjects into 3 groups: with normal TBS (≥1.200), partially altered (TBS >−1.200 and ≤−1.350), and normal (TBS >−1.350) trabecular microarchitecture. Finally, we evaluated the radiological findings of intervertebral disc calcifications (IDCs) at the Vertebral Fracture Assessment (VFA).

RESULTS

We evaluated 49 patients with β-thalassemia, mean age 35.2 ± 9.6 years, divided into two groups: 25 patients with Z-score ≤−2 and 24 patients with Z-score >−2. There was a statistically significant difference between groups in number of vertebral fragility fractures (p=0.0339) (Table 1). At the HSAS we observed significant differences in FSI (1.29 ± 0.50 vs 1.64 ± 0.33) (Table 2). Furthermore, TBS of patients with Z-score ≤−2 was significantly lower than the individuals with Z-score >−2 both as mean value (1.00 ± 0.13 vs 1.14 ± 0.14, p=0.006) and as categorized value (p=0.0061) (Table 3). Finally, we evidenced in 7 patients (15.56%) the presence of at least 1 IDC (Figure 1).

CONCLUSIONS

Our results showed that β-thalassemia is characterized not only by a reduction in BMD, but also by a bone geometry and bone microarchitecture disturbance, highlighting that TBS should be included in the assessment of these subjects, to provide adjunctive information for proper diagnosis, management and prevention of fragility fractures. Furthermore, presence of IDCs should be better investigated to understand their pathogenic role in skeletal disorder in thalassemic patients.

REFERENCES