The Impact of Glucocorticoid Therapy on Trabecular Bone Score in Older Women

M. A. Paggiosi, NFA Peel and R. Eastell

Academic Unit of Bone Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK

RESEARCH QUESTION

Is TBS a useful tool for identifying older women at risk of glucocorticoid-induced osteoporosis as well as those with prevalent fractures?

BACKGROUND

Glucocorticoid therapy is associated with increased fracture risk that cannot be fully explained by decreased bone mineral density (BMD); this may be a consequence of alterations in the micro-architectural properties of bone. ^[1]

Forearm

Humerus

Vertebral

Trabecular Bone Score (TBS) has been developed as a tool with which to examine bone micro-architecture using 2D dual energy x-ray absorptiometry (DXA) images of the lumbar spine (Fig 1.).^[2]

The aim of our study was to assess the ability of TBS to discriminate between glucocorticoid-treated women; women with prevalent fractures and healthy individuals.

	population-based	treated	Fracture	Fracture	Fracture	Fracture
	(<i>n</i> =371)	(<i>n</i> =64)	(<i>n</i> =46)	(<i>n</i> =37)	(<i>n</i> =30)	(<i>n</i> =28)
Age (years)	67.7 ± 7.3	67.4 ± 7.5	68.3 ± 7.2	69.4 ± 6.1	70.6 ± 6.6	73.0 ± 6.0 *
Height (cm)	160.6 ± 6.5	159.3 ± 6.2	158.6 ± 6.4	158.7 ± 6.6	156.8 ± 6.8	159.4 ± 6.8
Weight (kg)	70.3 ± 12.3	72.9 ± 15.6	70.9 ± 15.2	71.0 ± 11.4	62.1 ± 16.1 †	66.0 ± 13.1
LS-BMD (g/cm ²)	0.927 ± 0.164	0.906 ± 0.182	0.872 ± 0.180	0.836 ± 0.142	0.704 ± 0.136	0.802 ± 0.150
TBS (mm ⁻¹)	1.122 ± 0.138	1.011 ± 0.152	1.071 ±0.141	1.014 ± 0.123	0.983 ± 0.130	1.036 ± 0.140

* = significantly older than those in the forearm fracture, steroid treated and healthy postmenopausal groups

Glucocorticoid-

Healthy

[†] = significantly lower weight than those in the forearm and <u>humerus</u> fracture groups, the steroid treated group and the healthy postmenopausal groups.

Abbreviations: SD; standard deviation, n; number, LS-BMD; bone mineral density, TBS; trabecular bone score

Fig 2. Z-scores (mean (95%CI)) for BMD and TBS for (i) healthy individuals; (ii) glucocorticoid- treated women; and (iii) women with prevalent fractures

C	BMD		TBS		BMD + TBS	
study group	AUC	95%CI	AUC	95%CI	AUC	95%CI
Glucocorticoids	0.572	0.491 to 0.653	0.721*ª	0.654 to 0.788	0.721*b	0.654 to 0.788
Forearm Fracture	0.641*	0.547 to 0.735	0.621*	0.535 to 0.707	0.622*	0.575 to 0.749
Humerus Fracture	0.689*	0.602 to 0.776	0.757*	0.679 to 0.834	0.753*	0.676 to 0.830
Vertebral Fracture	0.876*	0.818 to 0.935	0.802*	0.725 to 0.879	0.892**	0.834 to 0.950
Hip Fractures	0.739*	0.643 to 0.834	0.696*	0.594 to 0.798	0.763*	0.675 to 0.852

METHODS

Study design:

We conducted a cross-sectional, observational study.

Participants:

Older women (n = 484, ages 55 to 79 years) were recruited from the local population.

Women had either:

- (i) Taken prednisolone >5 mg/day (or equivalent) for >3 months (n = 64)
- (ii) Sustained a recent fracture of the distal forearm (n = 46), proximal
 - humerus (n = 37), vertebra (n = 30) or proximal femur (n = 28)

Or were:

 (iii) Healthy population-based individuals without prevalent fractures (n = 279), not taking medications known to affect bone metabolism and without diseases known to cause osteoporosis

Densitometry:

Lumbar spine BMD (LS-BMD) was measured by DXA (Hologic QDR 4500A). TBS was calculated by examining pixel variations within the DXA images to produce grey -level texture measurements (TBS - Clinical Data Analysis software v1.6, Med-Imaps) (Fig.1.)

Statistical analysis:

Age-adjusted Z-scores (mean (95%CI)) for LS-BMD and TBS for (i) the glucocorticoid-treated women; (ii) the women in each fracture study sub-group; and (iii) healthy individuals, were calculated.

Differences between the study sub-groups was examined using ANOVA with post hoc Student-Newman-Kuels tests for pairwise comparisons.

CONCLUSIONS

- BMD and TBS demonstrate similar discriminatory ability for recent fracture
- However, TBS appears to provide additional information regarding alterations in bone quality resulting from treatment with glucocorticoids
- BMD alone does not reveal such qualitative information

KEY STUDY FINDINGS

TBS, when used in conjunction with BMD, may be a useful tool

The discriminatory ability, area under the curve (AUC) was determined using receiver operator characteristic (ROC) analysis for (i) BMD alone; (ii) TBS alone; and (iii) BMD + TBS (calculated using logistic regression). The AUCs were then compared using pairwise comparisons of ROC curves. A p<0.05 indicated statistical significance.

for identifying women with glucocorticoid-induced osteoporosis and those with prevalent fractures.

REFERENCES

[1] Lekamwasam S et al. Osteoporos Int 2012, 23; 9: 2257-2276.[2] Pothuaud L et al. Bone 2008, 42: 775-787.

OUTCOME MEASURES

- Lumbar spine BMD (in g cm⁻²)
- TBS (in mm⁻¹)

ACKNOWLEDGEMENTS

The authors would like to thank Med-Imaps (Pessac, France) for providing the TBS software and for use of the images shown in Fig.1.

The OPUS study was funded by Eli Lilly, Sanofi-Aventis, Procter & Gamble Pharmaceuticals, Hoffman - La Roche, Pfizer, Novartis and the National Osteoporosis Society (UK)