

Establishing a Zebrafish model for Osteoporosis

Chen Shochat Carvalho, Ram Harari and David Karasik

Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel

Introduction

- The low-density lipoprotein receptor-related protein 5 (*Irp5*) gene is known for its involvement in bone metabolism in humans. It is unclear whether it is involved in bone function starting early in life.
- The purpose of our study was to investigate whether knocking out *Irp5* gene will affect early bone development and

Materials and methods

- CRISPR-Cas9 technology was used to create guide RNA for *Irp5* gene and Cas9 mRNA (*fig.* 1).
- Zebrafish embryos (F0) at 1-cell stage were injected with CRISPR, grown to adulthood (3 months) and mated to obtain progeny (F1).
- At 8, 10 and 13 days post fertilization (dpf) F1 zebrafish were stained with calcein and visualized under fluorescent microscope (*fig. 2*).

create osteopenia.

We created a CRISPR Irp5 knockout zebrafish and phenotyped its skeleton at larval stages.

Figure 1. Scheme of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) system for genetic engineering (Kim and Kim 2014 Nature Reviews).

Number of mineralized vertebrae was compared between wild type and *Irp5* mutated zebrafish, adjusted for length.

Results

- No polymorphism was found in Irp5 guide RNA target site \bullet (fig. 3)
- F1 progeny of Irp5 CRISPRed zebrafish had knockout mutations caused by frameshifts (*fig.* 4).
- Significant difference in the number of mineralized vertebrae between WT and *Irp5* mutated ZF was found only at 8 dpf (fig. 5,6).

Number of mineralized vertebrae in wild type and *lrp5* mutated zebrafish

Figure 2. Fluorescent calcein staining of 8 dpf fish shows mineralized vertebrae. Length indicated in mm.

Irp5 CRISPR-Cas9 target site

Number of mineralized vertebrae

Figure 5. Number of mineralized vertebrae in *Irp5* mutated (left) and wild-type (WT, right) zebrafish, age 8 dpf.

Number of mineralized vertebrae at 8, 10, 13 dpf in mutants and WT

AGGTGGGT CGCT CAG AGT CTGCA GGTGGTCA

Guide RNA sequence

Figure 3. No polymorphism found in zebrafish lrp5 guide RNA target site for CRISPR-Cas9, allowing hybridization of the guide RNA to its target.

Zebrafish *Irp5* knockout mutation – Val53fs

- GAG TCT GCA GTG GTG GTC AGT GAT WT Ser Asp
- GAG TCT GTG GTC AGT GGT GGT CAG TGA ins 4bp Mut Glu Ser stop Gin

Figure 4. Sequencing of DNA from Irp5 CRISPR-Cas9 injected zebrafish shows a knockout mutation in *Irp5* gene in F1 progeny (WT-wild type, Mut- mutated).

Conclusions

- Zebrafish is highly amenable to CRISPR-Cas9 mutagenesis.
- We established *Irp5* knockout in zebrafish
- We applied a calcein staining assay to screen *Irp5* zebrafish mutants for bone development (ossification).
- Our results indicate that *Irp5* knockout influences very early stages of bone development (mineralization).