rs72658163, a new heterozygous variant in Joscar **COL1A2** associated with atypical femoral fracture U1132 Instituts thématiques Inserm Funck-Brentano Thomas^{1,2}, Ostertag Agnes¹, Debiais Francoise³, Fardellone Patrice⁴, Corinne Collet¹, Mornet Etienne⁵ and Cohen-Solal Martine^{1,2} ASSISTANCE DE PARIS

1: INSERM UMR1132, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France

2: Department of Rheumatology, Lariboisière Hospital, Univ Paris Diderot, Paris, France

- 3: Department of Rheumatology, Poitiers University Hospital, Poitiers, Paris, France
- 4: Department of Rheumatology, Amiens University Hospital, Amiens, France

5: Unité de Génétique Constitutionnelle, Centre Hospitalier de Versailles, Le Chesnay, France

@:thomas.funck-brentano@aphp.fr

Introduction

Atypical femoral fractures (AFF) of the subtrochanteric region are rare. Bisphosphonates account to a large extent to their occurrence, however AFF also occur without exposure to bone medication.

Some observations of patients with bone genetic disorders (like

To determine the genetic variants for TNSALP or COL1A1/COL1A2 genes in patients with AFF

Objective

P415

hypophosphatasia, HPP) who encountered AFF have suggested a possible genetic predisposition to this rare event.

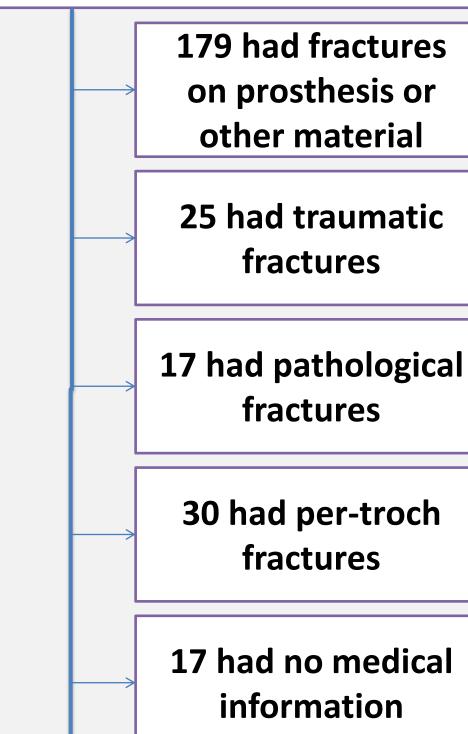
We here assessed the genetic factors associated with AFF among subtrochanteric fractures.

Methods

Data sources and classification criteria

- **3 French academic hospitals** in Paris, Poitiers and Amiens
- identified using ICD-10 codes for subtrochanteric fractures (S72.2) or for femoral shaft (S72.3) in patients > 50 years-old.
- files including **medical records** and admission standard radiographs of the entire femur were **reviewed by 2 rheumatologists**
- excluded in case of high-trauma, if associated to a pathological condition such as bone metastasis or when they were periprosthetic, when fractures were not subtrochanteric or in the femoral shaft (miscoding), and when medical information was missing
- classified as typical or atypical according to the **ASBMR 2014 Task Force** \bullet

Genetic assessment


- Patients with AFF were called and asked to participate to the genetic evaluation.
- After informed consent, blood was drawn for genetic tests.
- The array included following genes for HPP diagnosis and differential diagnosis: ALPL, COL1A1, COL1A2
- Next generation sequencing (NGS) : Ion Torrent Personal Genome Machine (PGM)
- Confirmation of mutations by the Sanger

method

Results

1. Flow chart

389 women and men (\geq 50 yrs), DP S72.2 and S72.3, without DA cancer, between 2007 and 2010

2. Patient's characteristics

	Atypical fractures	Typical fractures	p-value			
	n=14	n=107				
Demography						
Age (yrs)	73±10	79±11	0.08			
Weight (kg)	64±17	66±16	0.42			
Height (cm)	158±13	163±9	0.15			
BMI (kg/m²)	27±5	26±5	0.43			
Female (%)	12 (86%)	78 (73%)	0.52ª			
Associated diseases and bone treatments (number and %)						
HTA	8 (62%)	73 (70%)	0.54 ^a			
Diabetes	1 (8%)	18 (17%)	0.69 ^a			
Cognitive Function	5 (38%)	50 (48%)	0.51			
Arrhythmia	1 (8%)	24 (23%)	0.29 ^a			
Lipid disorders	4 (31%)	29 (28%)	0.76 ^a			
Calcium /vitamin D supplements	5 (38%)	9 (9%)	<10 ^{-2 a}			
Bone treatment	5 (36%)	5 (5%)	<10 ⁻² a			

^a: Fisher's exact test

	Patient	Age	Traitement for OP	TNSALP	COL1A1/A2
	1	75	Raloxifene	ND	ND
	2	74	Alendronate	NONE	ND
	3	76	Alendronate	ND	ND
	4	65	Alendronate	ND	ND
, a	5	78	Risedronate	Heterozygous polymorphism c.1365C>∓ (p.Gly455Gly)	Heterozygous polymorphism c.2123G>A (p.Arg708Gln) on COL1A2
	6	87	None	Heterozygous polymorphism c.1542G>T (p.Ala514Ala)	NONE
	7	69	None	ND	ND
	8	80	None	ND	ND
	9	54	None	Heterozygous polymorphism c.787T>C (p.Tyr263His), c.862 20G>T, c.862 51G>A, c.863-7T>C, C.863- 12C>G, c.876A>G (p.Pro292Pro)	ND
	10	85	None	ND	ND
		07	None	ND	ND
	11	83	None		
	11 12	83 77	None	NONE	NONE
-				NONE ND	

ST/FS Fractures n = 121					
Typical n = 107	Atypical n = 14				
Conclusion					
 AFF is a rare event. AFF can occur with (36%) or without (64%) bisphosphonate exposure Out of the 5 analyzed patients, we found 1 variant of COL1A2 that might be associated with bone matrix abnormality, and 3 common variants in TNSALP Further NGS screening in AFF is needed to confirm a genetic 					

4. rs72658163

Variant of COL1A2

- Variation of unknown significance \bullet
- Missense variant
- cDNA level: NM 000089.3:c.2123G>A
- gDNA level: Chr7(GRCh37):g.94049588G>A \bullet
- protein level: p.Arg708Gln
- Protein change R618Q
- Described in a lethal form of Osteogenesis imperfecta [1], an in an atypical form of Marphan Syndrom [2]
- Causes abnormal $pro\alpha 2(I)$ collagen in type I collagen fibrillogenesis in vitro [3]
- Allele Frequency ExAC= 0.07% (All) 0.08% (Eur)
- PolyPhen-2 = Potential damaging score = 1

[1] Forlino A, Keene DR, Schmidt K, Marini JC. An α2 (I) glycine to aspartate substitution is responsible for the presence of a kink in type I collagen in a lethal case of osteogenesis imperfecta. Matrix Biol. 1998;17(8):575–584.

[2] Phillips CL, Shrago-Howe AW, Pinnell SR, Wenstrup RJ. A substitution at a non-glycine position in the triple-helical domain of pro alpha 2(I) collagen chains present in an individual with a variant of the Marfan syndrome. J Clin Invest. 1 nov 1990;86(5):1723-8.

[3] Vomund AN, Braddock SR, Krause GF, Phillips CL. Potential modifier role of the R618Q variant of $pro\alpha 2(I)$ collagen in type I collagen fibrillogenesis: in vitro assembly analysis. Mol Genet Metab. juin 2004;82(2):144–53.