

## **Calcification in the vessel wall – impact of** CBMGC vitamin K dependent proteins (VKDPs) BIOMARKER RESEARCH

Schweighofer N.<sup>1</sup>, Aigelsreiter A.<sup>2</sup>, Trummer O.<sup>3</sup>, Kniepeiss D.<sup>3</sup>, Wagner, D.<sup>3</sup>, Stiegler P.<sup>3</sup>, Pieber T.<sup>1,4</sup>, Müller H.<sup>3</sup>, Obermayer-Pietsch B.<sup>1,4</sup>

<sup>1</sup>Department of Internal Medicine, Division of Endocrinology and Metabolism, <sup>2</sup>Institute of Pathology, <sup>3</sup>Department of Surgery, Division of Transplantation Surgery, Medical University of Graz, <sup>4</sup>CBmed, Center for Biomarker Research in Medicine, Graz, Austria

### Introduction and aim:

Pathophysiological calcification in the vasculature favours cardio- and cerebrovascular diseases (CVD). In patients with chronic kidney disease vitamin K metabolites, particularly K1 and MK-4, are associated with decreased vascular calcification.

We investigate the expression of classical (MGP, OC, BSP) and new vitamin K dependent proteins in vessels and bone to in expression identify differences pattern during atherosclerosis (AS) stages in aortic vascular tissue and compare these profiles in both tissue types.

# **Material and methods:**

Gene expression levels of vitamin K dependent proteins (BSP, MGP, OC, TGFBI, GRP, GAS6, periostin, protein Z, protein S, PRRG 1-4) were examined with predesigned TaqMan gene expression assays on a LC480 system in vessels (external iliac artery and aorta) and bone of 26 brain dead organ donors. Beta actin was used as a reference gene and relative Cp values were obtained by division.

Determination of calcification stages was done histologically: no changes: unaffected vessels, intima thickening: more than one-fold thickening of the intima without calcification, intima calcification: one or more calcification spots.

Statistics. \* p < 0,05; \*\* p >0,01; \*\*\* p>0,001

## Atherosclerosis vs no atherosclerosis



#### Fig.1: Comparison of gene expression of VKDPs in vessels and bone: Gene expression of MGP (p=0.001), TGFBI (p<0.001), GAS6 (p<0.001), PERIOSTIN (p<0.001), PROTEIN S (p=0.001) and PRRG1 (p=0.001) decreased in bone compared to vessels in

# Atherosclerosis progression



Fig.4: Comparison of gene expression of VKDPs in vessels and bone in three stages of atherosclerosis: Differences in gene expression of TGFBI (p=0.023) and PERIOSTIN (p=0.002) are seen in intima thickening, in intima calcification also MGP (p=0.007), GAS6 (p<0.001), protein S (p=0.002) and PRRG1 (p=0.001) show





Fig.2: Gene expression of Fig.3: Gene expression of VKDPs in vessels: Gene expression of GRP, PRRG1, 3 and 4 are significantly decreased in atherosclerosis compared to normal state (p=0.037, p=0.002, p=0.011 p=0.011, and respectively).

VKDPs in Gene bone: expression of BSP significantly decreased (p=0.018) when atherosclerosis in vessels is present.

differences in gene expression in bone and vessels.







Fig.6: Gene expression of VKDPs in bone in 3 AS stages: Gene expression of VKDPs did not change during AS progression (p-values not shown).

CONTACT

• CBmed GmbH

office@cbmed.at

• MEDICINE

#### Summary:

- We show that gene expression of classical VKDPs known to regulate bone calcification changes in the vessel wall in atherosclerosis development.
- VKDPs known to be involved in blood coagulation like protein S and Z are expressed in bone and vessels and their gene expression changes during AS progression.
- We demonstrate that different gene expression patterns exists in AS progression in bone and aorta.
- During AS progression gene expression patterns change in vessels but not in bone.
- Gene expression of VKDPs differs between bone and vessels in the stage of intima thickening but mostly in the stage of vessel calcification.

Acknowledgments: Work done in "CBmed" was funded by the Austrian Federal Government within the COMET K1 Centre Program, Land Steiermark and Land Wien.



### **Conclusion:**

Gene expression of vitamin K dependent proteins changes during calcification of the vessel wall. These data might implicate a more complex role of vitamin K dependent proteins in vascular calcification than previously known.

• CENTER FOR BIOMARKER RESEARCH IN

• Stiftingtalstrasse 5 8010 Graz

• Phone: +43 316 385 28801